| Course
Type | Course
Code | Name of Course | L | T | P | Credits | |----------------|----------------|----------------|---|---|---|---------| | DE | NMED5:09 | Gas Dynamics | 3 | 0 | 0 | 3 | ## **Course Objectives** Prerequisite: Knowledge in basic fluid mechanics is essential - The aim of the course is to lay out the basic concepts and results for the compressible flow of gases. - Students can apply the principles of gas dynamics for the design of high speed vehicles, such as rockets, missiles and high speed aircraft. ## **Learning Outcomes** Upon successful completion of this course, students will: - · have a broad understanding of the basic concepts of gas dynamics. - · have a thorough understanding of Mach waves, shock waves and their relations. - be able to apply the principles of gas dynamics for predicting the aerodynamic characteristics of the in high speed vehicles. | Unit
No. | Topics to be Covered Lecture | Lecture Hours | Learning Outcomes | |-------------|--|---------------|--| | 1 | Review of Fundamentals: Concepts from Fluid Mechanics, Compressibility Thermodynamic concepts, Conservation equations, Stagnation state | 4L | To understand the basic concepts and elements of compressible flow | | 2 | Compressible flow: Concept of Waves in fluid, Mach waves, Compression waves, Expansion fans, Differential equations for 1D flow | 4L | To understand the concepts of Mach
waves, Compression waves, Expansion
fans and differential equations for 1D
flow | | 3 | Basic Flow features: Isentropic flow,
Shock waves, Stationary and Moving
Shocks, Oblique Shocks, Bow Shocks,
Expansion Fans, Normal Shock Concept,
Normal Shock relations, Moving normal
shocks Concept and theory, Oblique
Shock relations, Property variations | 7L | To understand the concepts of a shock wave, stationary and moving, Normal and oblique shocks, Normal/Oblique shock relations | | 4 | Detached Shocks, Shock Reflections, Flow around bodies, Crocco's theorem, Cone flows, Shock expansion theory | 10L | To understand the concepts of detached shocks, shock reflections, Cone flows and shock expansion theory | | 5 | Quasi-1D flow with area variations, | 10L | To understand the concepts of QUASI- | |---|--|--------|---| | | Geometric Choking, Convergent Nozzles, | | 1D flows, Under expanded and over- | | | CD Nozzles, Exit vs Stagnation pressure | | expanded jet flows, Flows with friction | | | variation, shock wave reflections, Jet | | and Flows with heat transfer | | | flows, Under expanded and over- | | | | | expanded jet flows, Flow with Friction, | | | | | Friction choking, Flow with heat addition, | | | | | Thermal choking | | | | 6 | Prandtl Meyer Function, Supersonic wind | 7L | To understand the concepts of | | | tunnel, Shock Tube, Shock tunnel, Flow | | supersonic wind tunnel, Shock Tube | | | visualization, Basics of hypersonic flow | | and Shock tunnel | | | Total | 42 hrs | to the barry date the other in Account | | | | | | ## Text books - 1. Liepmann, H. W. and Roshko, A., Elements of Gas Dynamics, Dover Publications Inc., 2002. - 2. John D. Anderson, Modern Compressible Flow: With Historical Perspectives, 3rd Edition, 2004. ## Reference books - 1. Oosthuizen, P. H. and Carscallen, W. E., Compressible Fluid Flow, McGraw-Hill international Edition, Singapore, 1st Edition, 2003. - 2. Babu, V., Fundamentals of Gas Dynamics, Wiley-Blackwell, 2nd Edition, 2014. - 3. Chapman A. J. and Walker W. F., Introductory Gas Dynamics, Holt, Reinhart and Winston, Inc., NY, USA, 1st Edition, 1971. - 4. S. M. Yahya, Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion, New Age International, 2018.